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ABSTRACT

We propose a class of algorithms for finding an optimal quasistatic
routing in a communication network. The algorithms are based on Galilager's
methed [1]. Their main feature is that they utilize second derivatives
of the objective function and may be viewed as approximations to a con-
strained version of Newton's method. The use of second derivatives results
in improved speed of convergence and automatic stepsize scaling with
respect to level of traffic input. These advantages are of crucial

importance for the practical implementation of the algorithm using dis-
tributed computation.
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1. Introduction

We consider the problem of optimal routing of messages in a communication
network so as to minimize average delay per message. We primarily have in
mind & situation where the statistics of external traffic inputs change
slowly with time as described in the paper by Gallager [1]. While algo-
rithms of the type to be described can also be used for centralized com-
putation, we place primary emphasis on algorithms that are well suited
for distributed computation

Two critical requirements for the success of a distributed routing
algorithm are speed of convergénce and relative insensitivity of performance
to variations in the statistics of external traffic inputs. Unfortunately
the algorithm of [1] is not entirely satisfactory in these respects.
In particular it is impossible to select in this algorithm a stepsize that
will guarantee convergence and good rate of convergence for a broad range
of external traffic inputs. The work described in this paper was motivated
primarily by this consideration.

A standard approach for improving the rate of convergence and
facilitating stepsize selection in optimization algorithms is to scale
the descent direction using second derivatives of the objective function
as for example in Newton's method. This is also the approach taken here.
On the other hand the straightforward use of Newton's method is inappropriate
for our problem primarily because of large dimensionality. We have thus
introduced various approximations to Newton's method which expleit the
network structure of the problem and facilitate distributed computation.

In Section 2 we describe a broad class of algorithms for minimum

delay routing. This class is patterned after a gradient projection method
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This

for nonlinear programming [2],[3] as explained in [4], and contains as a
special case Gallager's original algorithm except for a variation in the

definition of a blocked node [compare with equation (15) of [1]].
variation is essential in order to avoid unnecessary complications in the

statement and operation of our algorithms and despite, its seemingly minor
significance it has necessitated a major divergence in the proof of con-
vergence from the corresponding proof of {1].

Section 3 describes in more detail a particular algorithm from the
class of Section 2. This algorithm employs second derivatives in a
manner which approximates a constrained version of Newton's method [3]

and is well suited for distributed computation.
The algorithm of Section 3 seems to work well for most quasistatic

routing problems likely to appear in practice as extensive computational

However there are situations where the unity
In Section 4

experience has shown [5].
stepsize employed by this algorithm may be inappropriate.
we present another distributed algorithm which automatically corrects this

potential difficulty whenever it arises at the expense of additional com-
This algorithm also employs second derivatives,

putation per iteration.

and is based on minimizing at each iteration a suitable upper bound to a

quadratic approximation of the objective functien.
have been relegated to Appendices.

Proofs of convergence
Both algorithms of Sections 3 and 4 have been tested extensively and
These

computational results have been documented in [S] and [6].
ions made here regarding the practical

results substantiate the ars-
properties of the algorithms. There are also other related second

i
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derivative algorithms [7],[8] that operate in the space of path flows
and exhibit similar behavior as the ones of this paper. These algorithms
are well suited for centralized computation and virtual circuit networks
but, in contrast with the ones of the present paper, recuire global information
at each node regarding the network topology and the total fioﬁ on each link.

We finally mention that while we have restricted attention to the
problem of routing, the algorithms of this paper can be applied to other
problems of interest in communication networks. For exammple problems of
optimal adaptive flow control or combined routing and flow control have
been formulated in [9],([10] as nonlinear multicommodity flow problems of

the type considered here, and the algorithms of this paper are suitable

for their solution.
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2. A Class_of Routing Algorithms

Consider a network consisting of N nodes denoted by 1,2,...,N and L

directed links. The set of links is denoted by L . We denote by (i,%)

the link from node i to node £ and assume that the network is connected
in the sense that for any two nodes m,n there is a directed path from m to
n. The flow on each link (i,4) for any destination j is denoted by fiz(j)‘
The total flow on each link (i,%) is denoted by Fil’ i.e.
N
Fio = 1 £5,0).

3=1

The vector of all flows fig(j)' (i,8)eLl, j = 1,...,N is denoted by f.

We are interested in numerical solution of the following multicommodity

network flow problem:

nminimize ) D.,(F..) (MFP)
i,eL 12

subject to ) £,,0) - 1 £,0) = r,G),

2e0(i) mel(G) ™

vi=1,...,N,i#]
£,,G) 2 0, V(@E,8el,i=1,...,N, j=1,...,N
fjﬂ,(j) = 0, V(j:z)EL ’ j =1,...,N,

where, for i # j, ri(j) is a kaown traffic input at node i destined for j,

and 0(i) and I(i) are the sets of nodes £ for which (i,2)el and (2,i)el

respectively.

The standing assumptions throughcut the paper are:

H
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i
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a) ri(j) >0, i,j=1,...,8, i #j

b) Each function D;, is defined on an interval [O,Ciz) where C;
positive number (the link capacity) or +; Diz is twice continuously
differentiable on (O,Cig). The first and second derivatives of Diz

at zero are defined by taking tne limit from the right. Furthermore

Diz is convex, continuous, and bas strictly positive first and

second derivatives on {O,Ciz).

c

¢) (MFP) has at least one feasible solution. f satisfying Fii <Cy

for all (i,2el.

For notational convenience in describing various algorithas we will

suppress in what follows the destination index and concentrate om a single

destination chosen for concreteness to be node N. Our definitions, opti-

mality conditions, and algorithms are essentially identical for each
destiaation, so this notational simplification should not become a source
of confusion. In the case where there are multiple destinations it is
possible to implement our algorithms in at least two differasnt ways.
Either iterate simultaneously for all destinations (the '"all-at-once"
version), or iterate sequentially one destination at a time in a cyclic
manner with intermediate readjustment of link flows (the "one-at-a-tige"
version). The remainder of our notation follows in large measure the one
employed in [1]. In addizion all vectors will be considered to be column
vectors, transposition wiil be denoted by a superscript T, and the standard
Euclidean norm of a vector will be denoted by |+| , i.e. x'x = Ix]z for
any vector x. Vector inequalities are meant to be componentwise, i.e. for

x = (X),...5% ) we write x > 0 if x; 20 for all i =1,...,n.

Let t, be the total incoming traffic at node i

t, o= v+ ) £, i=1,..,N, ¢))
mel(i)
mfN

i mi

3 is either a

{

I L0 e
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and for t 70 let ¢i£ be the fraction of ts that “.avels on link (i,2)

e i=1,...,N-1 (3,2}ei.

Then it is possible to reformulate the problem in terms of the variables
¢iz as follows [1].

For each node i#N we fix an ofder of the outgoing links (i,2), 2c0(i).
We identify with each collection {¢19[{i,£)el., i=14i,,..,N-1} a colum
vector ¢ = (¢'§,¢§....,¢§_1) , where ¢i is the colimn vector with coordinates

¢i2,£60(1) . Let

1, (i,2)el, i =1,...,N-1}

(@)

© = {61655 2 0 p 60y Pig =

and let ¢ be the subset of $ consisting of 21l ¢ for which there exists a
directed path (i,%),...,(m,N) from every node i = 1,...,N-1 to the destination
N along which ¢i2. > 0,...,¢mN > 0. Clearly & and 9 are convex sets, and

the closure of ¢ is ®. It is shown in [1] that for every ¢c¢ and

T = (rl’rZ""’rN-l) with ¥y 2 0, i=1,...,N-1 there exist unique

vectors t(¢,r) = (1:1 (¢,r),...,tN_1(¢,r}) and £(¢,r) with coordinates

fil(d’:r)’ (i,R.)E:L, i # N satisfying
t(¢,r) > 0, £(¢,r) > O

t.($x) = ¢ 1 £.@,1), i=12,...,51
mel (i)
m#EN

£..(4,1) - £ .(,r) = r.. i=1,...,N1
zeg(i) 12 ms%(i) m *
AN

£,01) = @1, 1=l N1 0L

‘
i
‘
I
| “
|
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Furthermore the functions t(¢,r), £(9,r) are twice continuously dif-
ferentiable in the relative interior of their domain of definition
ox{r|r 2_0}. The derivatives at the relative boundary can also be defined
by taking the limit through the relative interior. Furthermore for every
r > 0 and every f which is feasible for (MFP) there exists a ¢cd such
that £ = £(¢,1).

It follows from the above discussion that the problem can be written

in terms of the variables ¢i£ as

(izzm Do [£,,6,7)] ®)

minimize D(¢,T)

subject to ¢ed,

where we write D(¢,r) = «@ if fi2(¢,r) Z-Cii for some (i,%)el.

Similarly as in [1], our algorithms generate sequences of loopfree
routing variables ¢ and this allows efficient computation of variéus
derivatives of D. Thus for a given
¢ed w2 say that node k is downstream from node i if there is a directed
path from i to k, and for every link (£,m) on the path we have ¢2m > 0.
We say that node i is ugétream from node k if k is downstream from i. We
say that ¢ is loopfree if there is no pair of nodes i,k such that i is

both upstream and downstream from k. For any ¢e$ and 1 > 0 for which
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D(d,r)< « the partial derivatives E%éQLEL can be computed using the follow-
if
ing equations [1]

aD

= i 3 i = -
EE;; = ti(Dig‘ + 3T ), (l,l}EL, 1 1,...,N 1 (4)

5%2 = 1 6,0+ %g—), i=1,...,N-1 (5)
i 2e0(i) B 2

D
BrN

= 0

where Dil denotes the first derivative of Diz with respect to fiz' The

D and 3D and their computation
LJT) ory

is particularly simple if ¢ is loopfree. In a distributed setting each
node i computes 3%2— and %57-via (4),(5) after receiving the value of
i% i
g%— from all its immediate downstream neighbors. Because ¢ is loopfree
A

the computation can be organized in a deadlock-free manner starting from

equations above uniquely determine

the destination node N and proceeding upstream [1].

A necessary condition for optimality is given by (see 1D

D 0

= min if ¢., >0
%0 peo@@) %m ik
D > min 2 if ¢, = 0,
59 pe0(i) *®im

where all derivatives are evaluated at the optimum. In vievw of (4,, this

condition can be written for ti >0
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@D . D .
D!, + = = min (D! + =) if ¢.. >0
i% Brz e (i) im Brm ik
oD - oD .
D!, + =— > min (D! + =) if ¢., = 0.
il 3r2 me0 (i) im arm if

Combining these relations with (5) we have that if t, # 0 then

D

= min s. (6)
U meo(s) ®
where
_ o :
Gi a = Dim + ar:n , vmed(d) 7N

In fact if (6) holds for all i (whether ti =0 or ti > 0) then it is suf-

ficient to guarantee optimality (see [1], Theorem 3).

He consider the class of algorithms

& o g ead L i=1,..80

where, for each i, the vector A¢§ with components A¢§2, 2e0(i) is any

solution of the problem
t.

P T i T,
minimize oiA¢i + %o A¢iM§A¢i

subject to 45 + 8¢, > 0, [ 86, =0,
: g
8., =0, VieBliz;60)
ig = 0 3¢

The scalar a is a positive paramever. The vector Si has components

[cf. (7]

5. = pr, + 3D i
8:0 Di?. + 31'2' , V2e0(1)

€Y

6)

e St o
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e . k k
where all derivatives are evaluated at ¢ and £(¢ ,r), and 5§ (or g'z} denotes
transpose of 5i(or Aéi). For each i for which ti(¢k,r) > 0, the matrix M;
is some symmetric matrix which is positive definite on the subspace

{V-[ X v, =0} i.e.
Y ge0) L

v?M%v. >0, yv. £0, z v. =0
i"ii i o ig ’
2e0{i)

This condition guarantees that the solution to problem (3) exists and is

unique. For nodes i for which ti(ék,r) = 0 the definition of H§ is immaterial.

i ga - k. - - s g - . i s
The set of indices B(i;¢ ) is specified in the following definition:

Definition: For any $c¢ and i=l,...;N=1 the set B(i;¢), referred to as

the set of blocked nodes for & at i, is the set of all 2£0(i) such that

W(4,T) _ D(6;T)
3ri = 3?%’

referred to as an improper link such that m=% or m is downstream of £

D) DD

arm - sr.,

¢i£ = 0, and either , oT there exists a link (m,n)

and we have ¢mn >0,

It is shown below that if ék

is loopfree, then ék*l generated by the
algorithm is also loopfree. Thus the algorithm generates a sequence of loop-
free routings if the starting éc is lcopfree. We refer to [1] for a
Adescription of the method for generating the sets B{i;@k) in a manner

suitable for distributed computation. Our definition of B(i;ék) differs

from the one of [1] primarily in that a special device that facilitated the

proof ¢f convergence given in [1j is not employed (compare with equ. (i5) of [1]).
We ncw deconstrate some of the properties of the slgorithm in the

following proposition.

- k. c s s g
Proposition 1: a) If o 3is loopfree then ¢ = is loopfree.

b} If ék is loopfrée and aék = 0 solves problem {9) then ¢x is optaimal.
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c) If ¢k is optimal then ¢k+1 is also optimal.

d) If A¢§ # 0 for some i for which ti(¢k,r) > 0 then there exists a

pesitive scalar nk such that

D(¢* + nag®,x) <D(85,1), vne(,n .

Proof: a) Assume that ¢k+1 is not loopfree and there exists a sequence

vich ¢k+l is positive. Then

05,r) _ e,
or or *
m n

of iinks forming a directed loop al--

there must exist a link (m,n) cn the loop for which

<
Frem the definition of B(m;¢k) we must have ¢En > 0 and hence (m,n) is an
improper link. Now move backwards around the loop to the first link
(i,%) for which ¢§£ = 0. Such a link must exist since ¢k is loopfree,
Since %, is upstream of m and (m,n) is imprope;r, we have 2sB(i;¢k) which
contradicts the hypothesis ¢§;1 > 0.

b) If A = 0 solves problem (9) then we must have 6§A¢>i > 0 for each

i and A¢i satisfying the constraints of (9)

v 2eB(i305).
(10)

k
A¢1 > "¢i: §‘5¢12 =0, A‘bil =0,

By writing A¢i = ¢i~¢§ ang uasing (5), (7) we have

Tre oK ) k
81 (4;-9;) % Sig%ip g IPL2Y)

aD
= 2 8. ¢, - =— > 0.
g i% 71 ari
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By considering ¢i£ = 1 individually for each 2¢R(i;¢k), we obtain

aD .k
-gf.i— < 619,’ Vi £ B(i;0 )

From (5) and (7) then

D,

ari ig

v £ B(i;e%),with 4’;1(2 > 0.

Since Diz >0 for all (i, el it follows from (5),(7) and the relation above that

thers are no improper links, and using the definition of B(i;¢k) we

obtain

min 612
i 2e0 (1)

which is a sufficient condition for optimality of ¢k [cf. (6)].

c) If ¢k is optimal then from the necessary condition for optimality (6) we

have that for all i with ti >0

aD

—— = min 8.
ari

mo(i)
It follows using a reverse argument to the one in b) above that

A¢§ = 0 if ti > 0.

Since changing only routing variables of nodes i for which ti = 0 does

not affect the flow through each link we have D(¢k,r) = D(¢k*1,r) and
¢k+1 is optimal,
d) Since M? is positive semidefinite for all i with t, >0 and A¢§ is a

sclution of problem (9) we have

6007 <

0

-

If t, > 0 then ME is positive definite on the appropriate subspace and
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the solution of problem (2) i~ unique, so if in addition Aﬁk # 0 then we

have

T,k
61A¢i <0,
Using the fact [cf. (4),{7}]

= = t.§,,

oD
3¢i

we obtain that

T |k
%%TA%“’

1

.

Hence A¢k is a direction of descent at ¢k and the result follows. Q.E.D.

The following proposition is the main convergence result regarding
algorithm (8),(9). Its proof is quite complex and is given in Appendix
A. The proposition applies to the multiple destination case in the

"all-at-once'' and the "one-at-a-time' version.

Proposition 2: Let the initial routing ¢° be loopfree and satisfy

D(¢°,r) S-Do where DU is some scalar. Assume also that there exist two
positive scalars A,A such that the sequences of matrices {M?} satisfy the
following two conditions:

a) The absolute value of each element of M? is bounded above by A.

b) There holds

Alv.]z < vTuy,
1 - 1 1 1

for all v, in the subspac: {v.]| = 0}.

V.
z,efs%i;q»“) i

Then there exists a positive scalar a (depsnding on Do’ A, and A) such

that for all
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ae(0,a] and k=0,1,... the sequence {¢k} generated by algorithm (8), (3)
satisfies

p¢**t, ) < p(¢*,r) , 1imD(*,r) = nin D{G,T).

k= $ed
Furthermore every limit point of {¢k} is an optimal solution of problem
(3).

Another interesting result which will not be given here but can be
found in [11] states that, after a finite number of iterations, improper
links do not appe.r further in the algorithm so that for rate of con-
vergence analysis purposes the potential presence of improper links
can be ignored. Based on this fact it can be shown under a mild
assumption that for the single destination case the rate of convergence
of the algorithm is linear [11].

The class of algorithms (8),(S) is quite broad since different
choices of matrices M; yield different algorithms. A specific choice
of M? yields Gallager's algorithm [1] [except for the difference in
the definition of B(i;¢k) mentioned earlier]. This choice is
the one for which M? is diagonal with all elements along the diagonal
being unity except the (2,%)th element which is zero where % is a node
for which

G.Q = min §
L 220(1)

if’
We leave the verification of this fact to the reader. In the next
section we describe a specific algorithm involving a choice of M? based

on second derivatives of Diz' The convergence result of Proposition 2

is applicable to this algorithm.

[

Y A e A I

et
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3. An Algorithm Based on Second Derivatives

A drawback of the algorithm of [1] is that a proper range of the
stepsize parameter o is hard to determine. In order for the algorithm
to have guaranteed convergence for a broad range of inputs r, one must
take o quite small but thiswill lead to a poor speed of convergence for
most of these inputs. It appears that in this respect a better choice
of the matrices M§ can be based on second derivatives. This tends to
make the algorithm to a large extent scale free, and for most problems
iikely to apyear in practice, a choice of the stepsize a near unity
results in both convergence and reasonably good speed of convergence for
a broad range of inputs r. This is supported by extensive computational
experience some of which is reported in [5] and [6].

We use the notation

" Dig
i ]2

[3f;,

We have already assumed that Dgz is positive in the set [O,Ci We could llke

P
-2 30X, n)
to choose the matrices M? to be diagonal with ti 2 along the
[3¢.,1]
i%

diagonal. This corresponds to an approximation of a constrained version
of Newton's method (see [3]), where the off-diagonal terms of the Hessian
matrix of D are set to zero. This type of approximated version of

Newton's method is often employed in solving large scale unconstrained
3%p

2
[3;,]
are difficult to compute. However, it is possible to compute easily

optimization problems. Unfortunately the second derivatives

upper and lower boupds to them which, as shcwn by computational ex-

s on By 1

o Ot )

b g Y 5D

T

o
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periments, are sufficiently accurate for practical purposes.

Calculation of Upper and Lower Bounds to Second Derivatives

%D

5 evaluated at a loopfree ¢e®, for all links

We compute

(i,el fo .aich L£B(i;¢). We have using (4)

%D 3

= =2 {t. 0!, + 29).
[34’12]2 3@12’ ivig 8!'2

Since 2£B(i;¢$) and ¢ is loopfree, the node £ is not upstream of i. It
at. aD!
follows that —— =

o - 0 and Fry D{,t.. Using again the fact that £is
ig at i2 D!

not upstream of i we have -ar—l = 0, aik = 0 and it follows that
2 '3
b o3 W a;tw, +£$=tazn .
Bipuarz arl 3¢.£ arz itig arz i [Brglz
Thus we finally obtain
2 2
3D . oy, - 2y, (an

2
A little thought shows that the second derivative —3——2—- is given by

[or,]
the more general formula %
. ¥ (2)q., (@)D" V% ,m=l N-1 (i2)
T3y (rer TX UKL T 1
?

where qjk(f.) is the portion of a unit of flow originating at ¢ which
32

[0y ]

goes through link (j,k). However calculation of

5 using this
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formula is complicated, and in fact tibere seems to be no easy way to

compute this second derivative. However upper and lower bounds to it ;1

can be easily computed as we now show. By using (5) we obtain

#p 3

D
= { D +=)}
[31'2]2 Brz ; %p om arm

Since ¢ is loopfree we have that if ¢!.m > 0 then m is not upstream of

8t2 30;2:
¢ and therefore —= = 1 and =D" ¢,_. A similar reasoning shows
arz ar 2 2R ki

that

32D 3 3D 3%p

= {J¢, @ +25—)} = Jo, —rr
arlarm Brm n &nt 4n arn o in Brmdrn

L

Combining the above relations we obtain

2
3D z 2 3D
7 = L0 Dpn * 1 L bgy bpn o -
{31.2']4 - im fm s n im T&n ¢ marn (13)
%D 3%p
Since 5;;5;-"— > 0, by setting gma_rn to zero for m#n we obtain the

lower bound

2
2 3D

¢ (D"  —).

g fm" im [or ]2

By applying the Cauchy-Schwartz inequality in conjunction with (12) we ‘

also obtain

o o _ o
ar_ar_ — 2 2
mn {ara] [arn]
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Using this fact in (13) we obtain the upper bound

QLDU
Q.
(=)
fA
el
Pt e T

where R, and R, are generated by

2
R, = ) ¢2 (o' +R) (14)
: R = 2 1 T 12 >
Ry = L 4 Dt Qg V&) (153

Ry = §k = 0 (16)

The computation is carried out by passing R, and ﬁi upstream together with

2
gé}-and this is well suited for a distributed algorithm. Upper and lower
2 2
bounds 2i2'°i£ for Q_E___E , Y¥B(i;¢) are obtained simultaneoulsy by
[% 5, | .
means of the equation [cf. (11)]
L W2
O T HOh +B) an
. |
Sﬂ = t;(0y, +R). (18) :

It is to be noted that in some situations occuring frequently in practice

the upper and lower bounds $., and ¢, sy coincide and are equal to the true
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2
second derivative. This will occur if ¢2m¢ﬁn %;552; = 0 for m#n. For
example if the routing pattern is as shown in Figure 1 (only links that
2
carry flow are shown) then ?iz = ¢.2 =30 for all (i,%el, UB(i;¢).
i —~i Ia¢i£]2 g

e

Figure 4

A typical case where 5&2 # ®,, and the discrepancy affects materiaily’
the algorithm to be presented is when flow originating at i splits and

joins again twice on its way to N as shown in Figure 2,




The Algorithm

The following algorithm seems to be a reasonable choice. If 'l:i ,4 0

we take M]; in (9) to be the diagonal matrix with
diagonal whe:re q>ilis the upper bound computed from (18) and (14)-(16) and

Ei 9 2e0({1) along the

e

o is a positive scalar chosen erperimentally. @nmest cases a=1 is satisfactory.)

Convergence of this algorithm can be easily established by verifying that
the assumption of Proposition 2 is satisfied. A variation of the method

results if we use in place of the upper bound $i!, the average of the

¢, + Q.
upper and lower bounds —LR'TH'— This however requires additional

computation and communication between modes.

Problem (9) can be written for t, £ 0 as

¢

. i 2
ninimize ) (5, 8., + 'fcle:'— (8050074
: k _ .k
subject to 85, 2 85,0 805, = O, Aps, = 0 V2eB(i;4))
L

and can be solved using a Lagrange multiplier technique. By introducing
the expression (18) for 312 and carrying out the straightforward calculation

we can write the corresponding iteration (8) as
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06, ,-u)
= max{o,cb}i}- — it (20)
t; (D¢ *Ry)

k+1
¢i2

where U is a Lagrange multiplier determined from the condition i

I maxf0, - _a_(-Giz-u)_ } o= 1. (21)
2¢B (i) t; @, k)

The equation above is piecewise linear in the single variable U and is

nearly trivial computationally. Note from (20) that o plays the role

of a stepsize parameter.

It can be seen that {20) is such that all routing variables @iz
such that 612 <y will be increased or stay fixed at unity, while all
routing variables ¢i£ such that 6i£ > u will be decreased or stay fixed

at zero. In particular the routing variable with smallest aii will either

be increased or stay fixed at unity, similarly as in Gallager's algorithm.

2 R
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4. An Algorithm Based on an Upper Bound to Newton's Method

While the introduction of a diagonal scaling based on second
derivatives alleviates substantially the problem of stepsize selection,
it is still possible that in some iterations a unity stepsize will not
lead to a reduction of the objective function and may even cause divergence
of the algorithm of the previous section. This can be corrected by using
a smiller stepsize as shown in Proposition 2 but the proper range of
stepsize magnitude depends on the network topology and may notbe easy to
determine. This dependence stems from the replacement of the Hessian
matrix of Drﬁf a diagonal approximation which in turn facilitates the
computation of upper bounds to second derivatives in a distributed manner.
Neglecting the off-diagonal terms of the Hessian means that while operat-
ing the algorithm for one destination we ignore changes which are caused
by other destinations. The potential difficulties resulting from this
can be alleviated (and for most practical problems eliminated) by operat-
ing the algorithm in a "one-at-a-time" version as discussed in Secticn 2.
However the effect of neglecting the off-diagonal terms can still be

detrimental in some situations such as the one depicted by Figure 3. Here

r,=r,=r,=71,>0, . =
3 4 ?

g =Tg = 0 and node 7

.‘
I
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is the only destination. If the algorithm of the previous section is
applied to this example witha=1, then it can be verified that each of
the nodes 1,2,3 and 4 will adjust its routing variables according to
what would be Newton'’s method if all other variables remained unchanged.
if we assume symmetric initial conditions and that the first and second
derivatives Dé7, Dg7 and 037, Dg7 are much larger than the corresjond-
ing derivatives of all other links, then the algorithm would lead to a
change of flow about four times larger than appropriate. Thus for
example a value of a = 1/4 is appropriate, while =1 can lead tu
divergence.

The algorithm proposed in this section bypasses these difficulties
at the expense of additional computation per iteration. We show that if
the initial flow vector is near optimal then the algorithm is gaaranteed to
reduce the value of the objective function at each iteration and to con-
verge to the optimum with a unity stepsize. The algorithm "upper bounds"
a quadratic approximation to the objective function D. This is done by
first making a trial change in the routing variablies using algorithm
(8),(9). The link flows that would result from this change are then. calcu-
lated going from the ''most upstream" nodes downstream towards the destination.

Based on the calculated flows the algorithm “senses" situations like theone in

Figure 5 and automatically "reduces" the stepsize. We describe the algo-
rithm for the case of a single destination (node N). The algorithm for
the case of more than one destination consists of sequences of single

destination iterations whereby all destinations are takea up cyclically

(i.e. the one-at-a-time mode of operation).




Tiie Algorithm

At the typical iterstion of the algorithm we have a vector of loop-
free routing variables ¢ and a corresponiding flow vector f. We first
carry out iteration (8),(9) with the cho?.ce of %11; described in Section
3 and a unity stepsize, and obtain a trial increment of routing variables

denoted by 4A¢*. Based on Ad* we calculate thenew (and final) increment of

routing variables 4% and the new routing vector
$ = 9§+ A% (22)

by means of a procedure of the following type. Each node i computes the
corresoonding vector of routing variablie increments é%i by solving a

problem of the form
minimize  Q, (A¢;) (23)

subject to the constraints

5$i2 > 0 if .&%;2' >0 (24a)
B, < 0 ifBgY, <O (24b)
B, = O if 8¢, = O (24)
1205, =0 (24)
éi%’. + ééii— >0 (24e)

where Q; {ééi} is a quadratic function of -5 which depends on ¢ and A3*,
and will be defined shortly. Notice that the constraint {24) guarantees
that the new vector of routing variables § is loopfree. In what follows

we describe the procedure and rationale for obtaining the form of the

quadratic fimction Qi of (23}, and show that al] computations can be

o B
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carried out in a distributed manner.
Let Af denote an increment of flow such that £ + Af is feasible.
A constrained version of Newton's method [3] is obtained if 4f is chosen

to minimize the quadratic objective function

1 2
_ o - te -
NAE) = i{£ JWLRS ilgDiQ(Afiz) (25)

subject to f + AfeF where F is the set of all feasible flow vectnrs.
Let 4¢ be the change in ¢ that corresponds to Af. We write
¢ = ¢+ 4

Finally let t and At be the vectors of tctal incoming traffic at the

networl. nodes and corresponding changes [cf. (1)]. Then we have

bt, = }:Afm, (26)

Af, = AtE +thd,. (27)

Substicvting (27) in (25) we obtain

NOE) = ] Dpatd., + ] DIot.a¢

3}
i,% i,? 1742 (28)

] . ~ 2 - , 2
t3 i{% Dip L@ 0007 + Dt 0, T A0, + Tti86:0)7]
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Nt = ' T .
Pia™ Dig* Diptia0, (29)
[HEE D! D B =
i % %05 + D), DY =0 (30)
By multiplying (30) by Atl, summing over i and using (27) we obtain
} D3 A, . e m - =
iyg WAL = Dbty - T g Dot
1 1,4
= ] Diat af. D'+ t '
Z iTi 172 122 i?z 1A¢19,9,
= ) D'at, - D: ¥ ot Dt
§ it % B S SRR 1)
= ¥ t.pg. D
o
k i,g TR
E_ . . :
By using this relation together with (29) we can write (28) as
N = bl
N(af) )' {y tiM’iz(Diz + D)
i g
.1‘. 1" ry 2 2
+3 in Dy Llat; 95 )7 + (t;0;,)°1) (31)
} Now if (Ati)2 were available then we could conceive of a recursive scheme
whereby node i would obtain the vector A¢i which minimizes the correspond-
ing term in the right hand side of (31) after receiving the value of Ei
from its downstream neighbors £, and in fact it can be seen that such a
computation can be carried out in distributed fashion starting from the
destination and proceeding upstream similarly as for algorithm (8), (9.
Unfortunately (Ati)2 depends on the values of A¢m for nodes m that lie

upstream of i. To bypass this difficulty we develop in what follows an
upper bound for the troublesome term z D;g(Atiaig)z by making use of

i.%
the increment A¢* obtained through an iteration of algorithm {(8},(3). When

this upperbcound is substituted in (31) we will obtain an upper bound to

i
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N(&f) of the form
N <Y tiQ (agy)
1

where Qi(A¢i) is precisely the expression to be used in the algorithm
[cf. (23)].
Let us define for all i = 1,...,N-1, (i,%)€l and A¢ satisfying the

constraint (24)

Moy = max(0,801) , Aor; = |min(0,801)] (32)
A¢;z = max(O,A¢ig) s A¢;£ = !min(O,A¢i2)l (33
byt e DRty o070y 05)] 6
At;‘ = g [tzAch; + Atz'(cph +A¢;;)] (35)
At; = g' [t£A¢;i+At£(¢ﬁ + Acpgi)} (36)
at, = % [tg80y,; + Aty (9, + 04y )], (37

The quantities At;+, At;- are well defined by virtue of the fact that the

set of links
L* = {(,2)elL] ;0 > 0, OF §, +AGT, > 0}

forms an acyclic network [in view of the manner that the sets of blocked
nodes B(¢;i) are defined in algorithm (8),(9)]. As a result At;+ and
At;' are zero for all nodes i which are the -'most upstream" in this
acyclic network. Starting from these nodes and proceeding downstream

+ - . . s
the computation of At; and At; can be carried out in a distributed

L A R 1 W

e s

Wi s
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manner for all nodes i using (34) and (35). Similarly [in view of the
constraint (24)] the quantities At;, At; are well defined. It can be

easily seen that for all i we have

-At

IA
In

- +
i oty at; .

As a result it follows that
2 +,2 -2
(et < )+ @)’ . (38)

We will develop upper bounds to the terms (At;)z and (Atgjz. To

this end we need the following lemma the straightforward proof of which

is left to the reader.

Lemma 1: Under the constraint (24)
«F = , +

Aty 0 = at;

0 1=§> Ati

By using (36},(34) and the Cauchy-Schwartz inequality we obtain for

It
(=]
L]
¢
(R
it

1,...,N-1

1]
=]

Atg' , Vi=1,...,N-1.

12

all i = 7,.,.,N-1 with At; >0
@th? = [Jee 00, « atde,. + actae’ 312 (39)
‘i AR 2721 EAg 51 : : )
r -
1/2 1/2 e e 12
+ #* et + At, A (At=TAer!
_ oAb, (tAd05) .3 Atld)zifﬁtz L) g 2 ¢ﬁ( 3 $74)
) ~+1/2 L + 1/2 2 +, +.1/2
|7 (%) : (A% 945) S
Tt (86?2 et e 2ot )2,
S DA . N % 21’ Ae:
2 + + . L+
i Apy S v s L brs apg
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where from zach summation above we exclude all nodes % for which the corresponding
denominator [and hence also the numerator by (24) and Lemma 1] is zero.

Similarly we obtain

- 42 -2 2 a4 27
byt <]y B 5 (8e)%0y .1 CHREN) }w'
i’ = ic

2 A%i 2 aey” L Bey A%i'
(40)
Define now for all i=1,...N-1
2
(8d7 )
"+ - 1" ® 2 b + "+ __18'__ (41)
Dy" = E {nizc«oﬂ) ber "+ Dy [“’iz + ot
¢
12
- 2\ 0 o (84’
. DyT = ) JDyp (B ey + DET[0p v (42)
. )

where the summation in (41) [(42)] is over all nodes % such that A¢;; £0
(A¢;; # 0). Define also

D§+ =0, D8 =0 (43)

Notice that given A¢i£ and DE+ for all downstream neighbors % it is possihle
for node i to compute D¥+ and Dg'. Thus for each A¢ satisfying (24) the
quantities Dg+, Dg'_are well defined and can be computed recursively start-
ing from the destination N and proceeding upstream in a distributed manner.

The following proposition yields the desired upper bound.

Proposition 3: Under the constraint (24) we have

N(AE) < T .0, (86) (44)
i
where
Q; (o) = % [0} + Dpad;, + 3(6,DY + Byo) (8;)”] (45)

o B wk\

bt BB 3

PR, A it 4
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0 if A¢i£ =0

Proof: In view of (31) it will suffice to show that

1 Iy 2 \ 2
129. Dyg(8ks850)" < i)‘z PLTICUTR (47)

From (38) we have

e 2 © 2 Y 2
DY (At ¢. )" = j(ac)” § DY (¢..) (48)
e igt T ivig i i g 1271

< ey oGt ] @’ ] oG’
1 1

For all i with At; > 0 we have, using Lemma 1, At;+ > 0 so by dividing (41)

by At;ﬁ we obtain

+ + +.2
pu D (24 ,)
2 v o (7 42 +2 17i i i

D e)® Iy 0% = § (ae)® [~ ] o [¢iz + —-;-2—]
i 3 i atgt goael A4y,

+.2 .+ +2 +.2. . . & 2
o ) oy I PG )
= g At*+ - iz£ L ﬁt*+ "t*j A¢*+ .

i * i ! iL

By using (39) we obtain
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+.2 ..+ +2 .+ + + .2 ’,
_ (at:) Y (at;) D} pu't. (Ad; ) 1
.cht;)z ZD'i'z(‘f’iz)z <] —'17‘"1— ) —%“2 * .X L2k
i L 1 Ati 2 Aty, i, 2 Aql 4
+ + .2 ﬂ
D" t. (A¢. ) !
) & titTHg (49) :

i, 2 A¢;;

Similarly we obtain
" -2
P )o@t < T DLA};@-—”')— : (s0) ‘
? ig
By combining (48)-(50) and using the constraint (24) we obtain the desired
relation (47). Q.E.D.
The algorithm can now be completely defined. After the routing in-
crement Ad* is calculated in a distributed manner by means of algorithm
j (8),(9), each node i computes the quantities At’i‘+ and At;_. This is done
recursively and in a distributed marner by means of equations (34), (35)
starting from the "most upstream" nodes and proceediﬁz downstream towards
the destination. When this downstream propagation of information reaches
the destination indicating that all nodes have completed the computation
of At:’{+ and At;', the destination gives the signal for initiation of the

second phase of the iteration which consists of computation of the actual

routing increments Aai. To do this each node i must receive the values
of 5}, Dgf, and Dgf frox its downstream neighbors £ and then determine
the increments Aaiz which minimize Qi(A¢i) subject to the constraint (24) ‘

and the new routing variables

O = Gyp * Adyq-

=l

Then node i proceeds to compute

, D'i'+, and DY” via (30), (41), and (42)
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and broadcasts these values to all upstream neighbors. Thus proceeding

recursively upstream from the destination each ncde computes the actual »

routing increments A$i in much the same way as the trial routing increments ?

A¢t were computed earlier. -

It is shown in Appendix B that if the starting flow vector £ is

sufficiently close to being optimal then the algorithm just described

reduces the value of the objective function at each iteration and con- H

verges to the optimal value. We cannot expect to be able to guarantee

theoretical convergence when the starting routing variables are far from g
optimal since this is not a generic property of Newton's method which the

algorithm attampts to approximate. However in a large number of com- K

putational experiments with objective functions tvpically arising in com- 7
munication networks and starting flow vectors which were far from optimal i
[S] we have never observed divergence or an increase of the value of the
objective function in a single iteration. In any case it is possible to
prove a global convergence result for the version of the algorithm whereby

the expression Qi(A¢i) is replaced by

Qo) = % (05 + D) 80y, + 3 (&;D% + B;,) (80,5)°) (1) i

where a is a sufficiently small positive scalar stepsize. In Appendix B

we show that by choosing o sufficiently small it is possible to guarantee

a reduction of the objective function at each iteration for any starting ‘

point ¢°s¢. This fact can be used to prove a convergence result similar ‘

to the one of Proposition 2.
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Appendix A: Proof of Proposition 2

The proof of Proposition 2 to be given in this appendix applies to
the "all-at-once' version of algorithm (8),(9), i.e. the one where at each
iteration k every rode i solves problem (9) for all destinations j and
adjusts the corresponding routing variables according to (8). A nearly
identical proof applies to the “one-at-a-time" version (see Gafni [11]).
The destination of flows, routing variables, etc. will be denoted within

parentheses. Thus for example ¢i£(j) denotes the routing variable of lini:

(i,2) for destination j.

The following llemma bears close similarity in both statement and

proof as Lemma 5 of Gallager [1]. The proof ¥ili e omitiid, but may be

found in [11].

Lemma A.l: Let the assumptions of Proposition Z nc}d. There exists a
scalar ae(0,1] (depending on Do’ A, and A) such *hat, for every ac(0,a],
the corresponding sequence &F} generated by algorithm (8),(9) satisfies

DL m-p%m) < -0 L [EPE@IZ k0,1, @A.D)
1,)]

lin t’i‘(j; 1865()] = 0, Vi,i=1,2,...,N, 1 #j (A.2)
k+® 1

lin €526 - £,6)1 =0, vGL.Bel, 1,551,2,.00N, i £ 5 (A3)
-+

where p is some positive scalar {depending on a, §0, A, AJ,t?(j) denotes

the total traffic arriving at node i which is destined for j when the

1.
routing is 4%, 805 (3) = 81 L (3)-4(3), and £5,(5), £i21(5) are the flows

TR

i |

S sy i S o 11

,::éi
i
3
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. . . . . k  k+l .
on link (i,%) destined for j and corresponding to ¢, ¢ respectively.
The following lemmz provides a key fact.

Lemma A.2: If ae(0,o] where o is as in Lemma A.l and {¢F} is a correspond-

ing sequence generated by algorithm (8),(9) there holds

- . K, . - . .
lim [BG) - £G)] = 0, Vij=1,...N 1437, (A.4)

ko»

where for all i,j,k

BO) = max(s, ()2 € 06, 431G) >0} (a-5)
B = min 8,() | %e0@), ©BG,EIG) - a8
L
k
K iy o pr (65 4 2200510
8.,(3) = D!, (£) +- . (A.7)
L L1 .
1 1 1 ari(J)

Proof: From a pecessary condition for optimality for problem (9) we obtain
k
t. () T k+1
(5 + 2= wEmak )11 - M 2 0 (A.8)

a

for all ¢i(j) which are feasible in problem (9). Let % and 2 be such

that
K ;o _ = ps k.. _ k.-
6530) = B, 8,0) = AG).

if 2 # £ we define 91(j) to be the vector with components

ORI
.

k+l .. .
¢iz ) otherwise
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o mm L a L.

where €>0 is small enough so that ¢§§1(j)-s>o. By definition of Z%(j)

such an € exists and by feasibility of ¢§+1(j) we have that ¢;(j) is also

feasible. Substituting ¢*(j) ir (A.8) in place of ¢.(j) we obtain
1 1

fBG) - £ < £ D) - w0

where u§2(j) and u?i(j) are the £ and  elements of the vector t?(j)M?(j)A¢§(j).

e g W

Using the assumption that all elements of M?(j) are bounded above by A

we obtain

0 < 3’-1‘(5) - é}{(i) < i—A tli‘(j) é l A¢’i"z(5)|.

This relation holds also if £ = % since then Fz(j) = éﬁ(j). From (A.2)

we see that the right hand side tends to zero. Equation (A.4) follows. Q.E.D.
Given any set of routing variables ¢ € ¢ there is a unique correspond-

ing set of flows fiZCj)‘ If we view the first derivative D{z(fiz) as the

length of link (i,%) then the corresponding shortest distance from any

node i to any other node j is well defined and will be denoted by Sij(¢).
It is easily seen using equation (6) that a sufficient

”~
condition for optimaiity of a set of routing variables ¢ € ¢ is

o 9N(4,T) - © g s ]
5,5 (@) —L—Bri(j) s Vo =L N i # . (A.9) |

Furthermore there holds

DG, r .. . . '
L o 1 - = =
s.j(¢) < —3—7?3% s, Ydedand i,j = 1,...,N, 1 # j. (A.10) ‘

We have the following lemma:

Lemma A.3: If ae(0,a] where a is as in Lemma A.1, {@k} is a correspond-

n~

ing sequence of algorithm (8),(9), m > 1 is an integer, and K is an infinite
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index set such that the subsequences {qb }k ek and {¢k m} ¢k converge to ¢

-~

arnl ¢ respectively then

£,) (6T = £,60)(61),  V(LDEL § = 1,.. N (A.11)

Sij(¢) = Sij(¢) , Vi,j=1,2,...,N (A.12)

Proof: Equation (A.11) follows from (A.3), and equation (A.12) follows

from the fact that Sij (¢) depends on ¢ only through the flows fia(j) (6,7).
Q.E.D.

We will use ""two dimensional induction" to show that the limit of

any convergent subsequence of {ék} satisfies the sufficient condition

for optimaiity (A.9). Lemma A.4 that follows represents the basic step
of the induction proof. We use repeatedly the fact that if some property
1 holds for ail k with k > kl and some property 2 holds for all k with k > kz

then both hold for all k with k > max (kl’ k.). In what follows we will

23
express this by writing "if 1 holds for all k large enough and 2 holds
for all k large enough, then both hold for all k large enough'.

Lemma 4.4: Let ae(0,a] where o is as in Lemma A.1, let {q.\k} be a

corresponding sequence generated by algorithm (8),(9) and let -

{% k- l}kt-:K ¢and {¢ }k ¥+¢ be twn convergent subsequences of {¢ }. For
each j let S (¢) be the set of distances {S (¢)] i g N}. Let
51(3),...,Sp(3), P < N be the distinct elements of the set SJ. (¢) and

assume without loss of generality that 0 = Sl(j) < Sz('j) <ooo< Sp(j). f

Denote

1,6 = {[—i-xé} < Sh a=1,...p. (A.13)
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Assume that for some integer q we have:
D(9,x) aD($,r) 5 - . .
2 = —=2=c = S.. ki =1,... .
3) W ari(J) ij (¢) 1 € Iq(J): J 1: :N (A 14)
b) For all k large enough, k € K, and for any j, if ¢;l(j) >0 and
oy , we Lo

m eI (j) then - . .
q oar (3) ar, (3)
Then:
a')
or, (3) Sij(¢) Vie Iq+1(33’ j=1,...,N (A.15)

b') For all k large enough, k€K, and for any j, if 4)15 (G) > 0 and
k k mn
. aD{d ,r oD 1)
I D% 1) (¢ ,1) |
m € q+1(3) then 3rm(3) > 3rn(J)
. . . (s
Proof: Let i be such that i € Iqﬂq)

and denote

BG) = (S @) = Dylf,(0.0)] + Sy (), Le 00} -

By the definition of shortest distance we have

53500 < DIg[£;,(4,1)] + 5,500) VR £ 2,(), 2e0(D).

Using (A.10) and the above equation

< (n " aD(¢,x)
or equivalently 1

5358 <85, (V1) V¥ 2 £ 2,0, e0(D).

By the assumptiocn Dg.i > 0 and the fact i € Iq-kl {(3), we have

£,G)C 1GY 5= Lo
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Therefore by using hypothesis a) we have

- r - o s DG.1) _ " A
6i£(3)(¢,r) D,-_l[fiz(é,r)] + 31'2(3') Dgg[fn(e’nr)} + Sﬁ(¢) (A.16)

Sij(¢) v 2e2; (3), j=1,...,N .
Since 0(i) is a finite set there exists = > 0 sich that

85, () (:T) = € > 8;,(N,T) V¥ £ 2. (3), WOt € 2,(G), § = L,ouul¥

-1

Since 6il(j)(¢’r) is continuodus in ¢ and {¢k }ke; is a convergent

sequence, we get that for all k large enough, k ¢ K

Kl + & ww ¢ 2,(), we0(i), 2 € 233Dy § = LiewuuNe

65, (D@L > 6,0 :

Also agz(. gg » 1 <i, j <N, is continuous in ¢ and therefore by Lemma
i
2, (A.16) and hypothesis a), for all k large enough, k € K

(s 1 1) s (s, 1)
ar, 5 ar, (3)

¥2e2,0), 3=1,...N

which together with hypothesis b) and the definition of B(¢;i)(j) implies

that. for all k large enough, k ¢ K

2.3 NBELDG) = 8, G108 . (A.18)

Lerma A.2 combined with (A.17) and (A.18) impliss that for all k laxge

evough k € K

56 = 0 ¥wELG), =18 (A.19)

and taking the limit
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0y ) = 0 WERG), 3=l (4.20)
Using (A.20), Lemma A.3 and hypothesis a} we have
LT . § o5 s . D(4,1) ]
L - b % | Pl (e 09 ]
P N L [ N aD(Q’r)
i
- . ' ~ . D{d,1r)
222 ) ¢;4() [Dik{fik(tb.r)l 7, 0) ]
] J
= Sij(¢) = Sij(fb)
This together with part a) of the hypothesis establishes a').
To see b'), notice that by continuity of §2—(--‘91-3-)—-111 ¢ and the
s, (3)
preceding equation we have that for all k lar . nough, k € K
LICUES I YOS N (A.21)
ar. (3) ar, (3) 31300 3= L :
Equations (A.21) and (A.18) hold for all i ¢ IQ+1(j) and b') follows,
Q.E.D.

By now we have developed all the machinery for the convergence proof

A

of Proposition 2. We will simply make repeated application of Leuma A.4

for the preper sequences.
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Proof of Proposition 2: Take @ to be as in Lemma A.1l, let ae(0,a) and
let {¢k} be a corresponding sequence generated by algorithm (8),(9).
The sequence {¢k} belongs to a compact set and therefore there exists
a convergent subsequence (¢k}k€K + ¢. The sequence {¢k-1}k€K has a

convergent subsequence {¢ }keK + ¢1, K1<: K. The sequence {¢k-2}kgK

1
has a convergent subsequerce {¢ }REKZ * d,s Kz(: Kl’ Proceeding

this way w2 get a convergent subsequence

k-~N+1
{¢ Lo , CK
keﬁ“l Nl " x

" -
We have KN-IC Ry.2 C...CK and

U VPR TR Uy X
N-1

By Lemma A.3 the shortest distances which correspond to
¢N-1’ ¢N-2”"'¢ are the same. As a result, in what follows, when we

mention the set Iq(j) we need not specify the limit point é; to which

it corresponds.

Let K in Lemma A.4 be KN—I' For each destination j, the only element
in Il(j) is j and therefore the assumptions of Lemma A.4 hold for

Il(j) and the pairs of sequences

ky ~ k-1 ~ k-1 k-2 k-N+2 k-N+1
SCo0 AP Chntes Mot PR s SR C s H0s RN € L D C A

keK’ keE}'

Applying Lemma A.4 for q = 1, we obtain that its hypothesis holds for

9 = 2 and the pairsof sequences ([ {d)k}ks K’ {o¥-1} 21,0,

ke K

k- N+3

({6 k~N+2

xeK' {¢ }keK])' Proceeding this way we note  that the
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hypothesis of Lemma 4.4 holds for q = N-1 and the pair

ki, ~ k-1 . .
({¢ }keK’ {¢ }keK ). Applying Lemma A.4 again we see that the
conclusion of its part a') holds for q = N-1, i.e., equation (A.15)
holds for IN(j),j =1,...,N. Since every node in the network belongs

to IN(j)’ j=1,...,N, it follows that (A.9) is satisfied, and hence

¢ is optimal.

Q.E.D.

g

g

™




g Appendix B

In this appendix we analyze the descent properties of the algorithm

of Section 4. We assume a single destination but the proof extends trivial-
ly to the case where we have multiple destinations and the algorithm is
operated in the one destination zt a time mode. In view of the fact that
each function Diz is strictly convex it follows that there is a unique

L optimal set of total link flows {f;zl(i,z)eL}. It is clear that given

any €>0 there exists a scalar Ye such that for all feasible total link

flow vectors f satisfying

£, - £5,1 < v, ,  v(E.el (B.1)

we have
1 LB JE 10 Y fy.snn * £3
Tre Dielfipr < DR E0 & Geadel, (fl). v, 0el. (B.<)

The strict positivisy assumption ng also implies that for each

Ye>0 there ei;é%s 373caiar J(ys} ,ucﬁrthat every feasible f satisfy-

ing '29 Diz(fiij ffé{ve) aise satzis®ies (B.1) and hence also (B.2). Further-
more ééye) can be taken arbitrarily large provided Yo is sufficiently

large. We will make use of this fact in the proof of the subsequent

result.

Proposition B.1: Let ¢ and ¢ be two successive vectors of routing

variables generated by the algorithm of Section 4 (with stepsize a=1)
and let f and T be the corresponding vectors of link flows. Assume

that for some € with 0 < ¢ < 2 - 1 we have

V3

REUUTIRE A (8.3)

where Ye is the scalar corresponding to ¢ as in (B.1l), (B.2), and G(YE)

is such that (B.1) [and hence also (B.2)] holds for all feasible f

satisfying (B.3). Then




— _ —
Y.
D) - D(4r) < - o(e) [ |t (00,08 ) 0 )° (B.4)
(3,2)el
2
where po(e) = lﬂ%’—zs— > © for all e with 0<5<E_ 1.

Proof: Let Af be the increment of flow corresponding to the increment

~

= ¢-¢. We have

— 1 2
D@F.1) - Do) = | AfizDig(fi£+nAfig)| ) 5-.2 (BF, ) DY, (£, o +nAE,; ) -
1,2' n=0 » n

for some n*e[0,1]. Denoting D;z(fil+n*Afi£) = 522 and using an argument

similar to the one employed in Section 4 [cf. (28}-(31)] we obtain

D(,r) - D(4T) = ] t,88,,(0!,4DY) + 7 o 2DUg)at 5, ¢ 80, i
i,4

) S = 2 Y
*3 L DI LT ) « (200,071,

i%e (B.5)
We will derive upper bounds fo- each of the three terms in the right
side of (B.S5).

From the necessary condition for A¢i to minimize the function
Qi(A¢i) of (45) subject to the constraint (24) we obtain

] ? \}

i [D P D + (DY +B, 2)A¢12]A¢ < 0

or
-— ~ ~ ‘2
E (Diy * DPad;, < - g (t5DFg * Byg) (805,3° (B.6)

There is no loss of generality in replacing each function Dii by

TR ]
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a function 5;2 which is continuously differentiable, is identical with Diz
on the set of flows satisfying (B.l) and is quadratic outside this set,
provided that, as part of the subsequent proof, we show that

i§2 Diz(fiz*“Afiz) f-G(Ys) for all ne[0,1]. By using this device we can assume
that Dgz satisfies (B.2) for all fiz’ Hence from (B.2)

D" - pm

-igh--i& < 1+ -1 (B.7)
ig
S'
=2 < e’ (3.9)
ig

Using (47), (B.7), the Cauchy-Schwartz inequality and the arithmetic-~gc.metric
inequality we have

y(D'z-D'l'z ae, ¢1l IA¢12 5‘ [(1+€) -1] ZD 2'At 1¢1£tllA¢1£l

1 1
< [(1+e) -1][2 Dy, (At ¢ )3 {7 DY (t1A¢1£) 32
1
< L1108 ¢ (00 )% [z Dy, (¢;00; )17 (8.9)
iR
< iasta 2 St (A¢ 22 DY, (t; 86, Nk

- Lgeel " PRY:
EEUCE R AR R U ACTIC

Using again (47) and (B.8) we obtain for each i

o - 2 ~ 2.
_Z Diz[(Ati¢iz) * (tiA¢i2) I

1S

2 . - " 2
(1+¢) 12 [oy (Ati¢i )2 Dlg(t16¢ )] (B.10)

2 2
1+e)? § It, su(ml2 + Dgg(tiA¢i£3 ]

IA

ave)?J ¢, L +8, ) (8, )7
1l

R o Tt s
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; By combining now (B.5), (B.6), (B.9), and (B.10) we obtain

D($,r) = D(¢,1‘)

| A

2 .
2 1+€ " 2
['1*-——-—(1‘;5) -1+ 5 (izz) o i (EPEe * Byg) (Ag)

]

r . - 2
-P(€) (izﬁ.)eL t5 (€050 *+B59) (950-9;9)

and (B.4) is proved. It is also straightforward to verify that

p(e) > 0 for € in the interval (O,Jgg -1). Q.E.D.

(i et et Tl i e

The preceding proposition shows that the algorithm of Section 4
- does not increase the value of the objective function once che flow
vector f enters a region of the form {f| | Dyo(£;,) 3.6(76)}, and that the size

¥
of this region increases as the third derivative of Di becomes smaller.

L
Indeed if each function Diz is quadratic then (B.2) is satisfied for ail

€>0 zud the algorithm will not increase the value of the objective for

all f.
The preceding analysis can be easily modified to show that if we
introduce a stepsize o as in (51) then the algorithm of Section 4 is a

descent algorithm at all flows in the region {f| } D,y (£,4) < 8()} where
i L

2+.
0<€< Jza “'10

From this it follows that given any starting point ¢°e¢, there exists

a scalar a0 such that for all stepsizes ac(0,a] the algorithm of

Section 4 does not increase the value of the objective function at each

subsequent iteration.
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